Поляриметрический мониторинг астероидов примитивных типов вблизи перигелия с целью обнаружения их сублимационно-пылевой активности

В. В. Бусарев,^{1,2,*} Н. Н. Киселёв,² М. П. Щербина,² Н. В. Карпов,² А. П. Горшков²

¹МГУ им. М. В. Ломоносова, Астрономический ин-т им. П. К. Штернберга (ГАИШ МГУ), Университетский проспект 13, 119234 Москва ²Институт астрономии РАН, Пятницкая 48, 119017 Москва

С декабря 2022 г. по апрель 2023 г. на телескопе «Цейсс – 2000» обсерватории Пик Терскол проведены UBVR-поляриметрические наблюдения 12 астероидов, в основном примитивных типов Главного пояса, находившихся на гелиоцентрических расстояниях вблизи перигелия. Целью мониторинговой программы был поиск изменений параметров поляризации астероидов, вызванных возможной сублимационно-пылевой активностью, в результате которой возможно формирование разреженных пылевых экзосфер астероидов. Объектами программы были астероиды: (1) Церера, (53) Калипсо, (117) Ломия, (164) Ева, (214) Ашера, (324) Бамберга, (419) Аврелия, (505) Кава, (554) Перага, (654) Зелинда, (704) Интерамния, (1021) Фламарио. Поляриметрические наблюдения астероидов (117) Ломия, (164) Ева и (505) Кава выполнены впервые, остальные астероиды наблюдались раннее. Только для двух астероидов (1) Церера и (704) Интерамния по спектрофотометрическим наблюдениям раннее была отмечена временная спектрофотометрическая переменность. Анализ временных изменений степени поляризации астероидов и сравнение результатов наблюдений с данными, имеющимися в литературе, показали, что стабильность наблюдаемой степени поляризации сопоставима с ошибками измерений ~ (0.02 ÷ 0.1) % у астероидов разного блеска. Таким образом, в период наблюдений не было обнаружено сколько-нибудь заметных поляризационных признаков временной сублимационно-пылевой активности наблюдавшихся астероидов. Дополнительно показано, что существующие в настоящее время варианты спектральной таксономии астероидов, основанные на спектрофотометрических данных и альбедо, демонстрируют значительное рассеяние выделенных классов при сопоставлении их с фазовыми зависимостями поляризации астероидов. У астероида (554) Перага подтверждена отрицательная степень поляризации на углах меньше угла инверсии. Измерения поляризации астероида (1) Цереры в широком диапазоне длин волн не подтвердили заподозренное ранее изменение угла плоскости поляризации с длиной волны.

Ключевые слова: астероиды, UBVRI-поляриметрия, сублимационно-пылевая активность

1. ВВЕДЕНИЕ

Спектральные наблюдения астероидов Главного пояса (АГП) примитивных типов (C, B, F, G, X) с вероятным содержанием в недрах водяного льда показывают, что у этих тел вблизи перигелийных гелиоцентрических расстояний и, соответственно, при максимальных подсолнечных температурах возможна временная сублимационно-пылевая активность (СПА), ведущая к образованию разреженной пылевой экзосферы (ПЭ) [1– 3]. Моделирование спектров отражения таких астероидов, окруженных оптически тонкой ПЭ, состоящей из агрегатных частиц субмикронного размера и разного состава, это полностью подтверждает [4, 5]. Из перечисленных результатов также следует, что спектрофотометриия и широкополосная UBVRI- фотометрия являются эффективными методами обнаружения феномена СПА у астероидов примитивных типов. В то же время для обнаружения и изучения данного феномена было бы целесообразно также использовать поляриметрический метод, который во многих случаях служит независимым источником информации об оптических, химико-минералогических и структурных особенностях поверхностей безатмосферных небесных тел и пылевых частиц (напр., [6, 7] и ссылки там же).

В нашей статье обсуждаются результаты UBVR-поляриметрических наблюдений на интервале времени около четырех месяцев двенадцати АГП в основном примитивных типов, находившихся вблизи перигелия орбиты. Как известно, фазовые углы АГП не превышают $\sim 30^{\circ}$ и поэтому возможные изменения их поляриметрических характери-

^{*} Electronic address: busarev@sai.msu.ru

стик и параметров невелики [7, 8], что затрудняет их использование для обнаружения изменений, вызванных появлением СПА и связанной с ней ПЭ. Для изучения возможностей использования поляриметрических параметров астероидов примитивных типов для обнаружения СПА было проведено численное моделирование (с использованием теории радиационного переноса излучения) этих параметров у условного астероида С-типа, окруженного оптически тонкой пылевой экзосферой ($\tau < 0.5$), состоящей из агрегатных частиц субмикронного размера и разного состава (лед H₂O, оливин, астрономические силикаты и органика типа толинов) [9]. На основании этого моделирования был сделан вывод, что по данным поляриметрии на фазовых углах менее 30° невозможно утверждать, была ли у астероида какая-то экзосфера или нет во время наблюдений, и тем более оценить ее свойства, так как изменения, вносимые рассеянием света в ПЭ в значения степени поляризации на указанных фазовых углах, малы и слабо отличаются для экзосферных частиц с разными параметрами [9].

Тем не менее, в качестве первоначального этапа мы провели поиск признаков СПА у вышеупомянутых астероидов примитивных типов, находившихся при максимальных подсолнечных температурах, с расчетом на то, что имеется вероятность обнаружения кратковременных вариаций поляриметрических параметров, связанная с наличием СПА и локальной неустойчивости ПЭ у некоторых из этих тел. Результаты этого небольшого обзора изложены ниже.

2. АППАРАТУРА, МЕТОДИКИ НАБЛЮДЕНИЙ И ОБРАБОТКИ

Поляриметрические наблюдения по программе поиска признаков сублимационно пылевой активности астероидов были проведены в период с 22 декабря 2022 г. по 26 апреля 2023 г. на 2-м (F/8) телескопе Цейсс-2000 системы Ричи-Кретьена-Куде обсерватории Пик Терскол (Северный Кавказ, Россия), оснащенного двухканальным апертурным поляриметром имени Н. М. Шаховского «POLSHAKH». Оптический тракт поляриметра включает модулятор, представляющий собой быстро вращающуюся ахроматическую волновую пластину (~ 30 оборотов в секунду). Для работы использовалась полуволновая пластина ($\lambda/2$), служащая для измерения линейной поляризации. После модулятора установлена призма Волластона, которая разделяет входящий свет на два ортогонально поляризованных луча. Эти лучи направляются зеркалами в два канала – синий и красный. Каждый из каналов имеет свой приемник излучения и набор спектральных фильтров, выделяющих необходимые фотометрические полосы: UBV в синем канале и UBVRI в красном канале. В качестве приемника излучения в синем канале стоит неохлаждаемый ФЭУ EMI 6556 В. В красном канале используется охлаждаемый приемник Hamamatsu R943-02. Наши наблюдения в основном проводились с центральными длинами волн и ширинами на полувысоте пропускания фильтров (FWHM) в полосах В (λ 434/117 нм) и R (λ 683/159 нм), а для некоторых объектов, в U(λ 360/74 нм), V (λ 540/80 нм) и I (λ 809/188 нм). Вращение фазовой пластины синхронизировано со временем накопления импульсов ФЭУ в каждом из 16 секторов положения фазовой пластины 0° – 22.5°, 22.5° – 45°, ..., 337.5° – 360° одновременно для двух ортогонально поляризованных лучей. Интенсивность света, прошедшего через идеальную полуволновую фазовую пластинку с оптической осью под углом φ , за которой следует анализатор (Волластон) с главной плоскостью под углом $\psi = 0°$, можно записать согласно [10]:

$$I(\varphi) = \frac{1}{2}(1 + q\cos 4\varphi + u\sin 4\varphi) \tag{1}$$

Этот метод обеспечивает квазиодновременное измерение параметров Стокса q и u приходящего излучения. Преимуществом этого метода является независимость измеряемых поляризационных параметров от изменений интенсивности, вызванных переменностью объекта и/или атмосферным поглощением. Измерения выполнялись по схеме: фон неба - астероид, астероид -, ... - фон неба. Длительность мониторинга каждого объекта была около 1 часа. При обработке наблюдений отсчеты от фона неба интерполировались на средние моменты наблюдений программного объекта (астероида) и вычитались. После коррекции фона неба решение системы уравнений (1) для 16 положений полуволновой фазовой пластинки позволяет получать значения параметров Стокса астероида в инструментальной системе q_{obs} и u_{obs} для каждой экспозиции. Используя весь ряд экспозиций, были получены средние значения наблюдаемых параметров Стокса q_{obs} и u_{obs} и u_{uots} .

Для определения инструментальной поляризации наблюдались неполяризованные звезды с нулевой поляризацией (P < 0.01%) из списка [10]. В результате наблюдений нескольких стандартов были получены средние инструментальные параметры q_{ins} и u_{ins} и их среднеквадратические ошибки $\sigma_{q_{ins}}$ и $\sigma_{u_{ins}}$ для каждой полосы и каждого сезона наблюдений. Инструментальная степень поляризации телескопа во всех полосах была менее 0.04% и была исключена из измеренной степени поляризации астероидов, согласно выражениям $q = \bar{q}_{obs} - \bar{q}_{ins}$ и $u = \bar{u}_{obs} - \bar{q}_{ins}$. В результате для каждого астероида и каждой полосы были определены степень $P = \sqrt{q^2 + u^2}$ и позиционный угол плоскости поляризации $\theta = \frac{1}{2}atan(\frac{u}{q}) + \Delta PA$ в экваториальной системе координат, где ΔPA поправки к нуль-пунктам инструментальных позиционных углов. Для определения поправок ΔPA проведены наблюдения звезд - стандартов с известной большой степенью поляризации и известными углами поляризации в экваториальной системе координат, взятые из [11, 12]. Поправки за нуль-пункты инструментальных позиционных углов во всех фильтрах были постоянны в пределах ±3 градусов. Более подробно поляриметр, методики наблюдений и обработки данных описаны в работе [13].

В дальнейшем, как это принято в планетной астрофизике, мы будем рассматривать параметры Стокса астероидов q_r и u_r по отношению к перпендикуляру к плоскости рассеяния φ , проходящей через Солнце, наблюдателя и объект изучения. Они связаны с величинами P и θ посредством выражений $\theta_r = \theta - (\varphi \pm 90^\circ)$, $P_r \equiv q_r = P \cos(2\theta_r)$ и $u_r = P \sin(2\theta_r)$. Знак в скобках выбирается «+», если ($\varphi \pm 90^\circ$) $\leq 180^\circ$, и «-», если ($\varphi \pm 90^\circ$) $\geq 180^\circ$ [14]. Обычно, если нет физических причин, то с точностью до ошибок измерений, положительная ветвь фазовой зависимости поляризации на фазовых углах $\alpha \geq \alpha_{inv}$ характеризуется ортогональностью плоскости поляризации θ по отношению к плоскости рассеяния φ , то есть $\theta_r = 0^\circ$, $q_r = P$ и $u_r = 0$. Угол α_{inv} – является углом инверсии, то есть фазовым углом, на котором меняется знак степени поляризации. На фазовых углах $0 \leq \alpha \leq \alpha_{inv}$, наблюдается так называемая отрицательная ветвь фазовой кривой поляризации с параметрами: плоскость поляризации θ параллельна плоскости рассеяния φ , то есть $\theta_r = 90^\circ$, $q_r = -P$ и $u_r = 0$.

Фазовые зависимости поляризации (ФЗП) безатмосферных космических тел (БКТ) Солнечной системы (астероиды, спутники планет), а также ансамблей частиц (например, кометы) являются одними из основных характеристик, морфология и параметры которых зависят от свойств частиц реголитовых поверхностей БКТ и частиц атмосфер комет. Для аппроксимации фазовых кривых используются различные выражения, например, тригонометрический полином [15], где $b, c1, c2, \alpha_{inv}$ - свободные параметры:

$$P(\alpha) = b \times \sin^{c1} \alpha \times \cos^{c2}(\alpha/2) \times (\alpha - \alpha_{inv}), \tag{2}$$

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ И ДИСКУССИЯ

	•		11	I	1 / 1			
			Фазовые углы	$m_v,$	Спектрал		альный класс	
Имя	Полосы	Пол. данные	α , град	зв.вел.	1	2	3	
(1) Церера	UBVR	APDB	12.2-20.8	7.9-7.3	G	С	С	
(53) Калипсо	BR	APDB	17.5-20.1	12.2-11.4	Xc		Ch	
(117) Ломия	BR		7.7-14.7	12.6-13.1	Xc	X	С	
(164) Ева	BVR		13.5-22.8	11.6-12.7	CX	X	С	
(214) Ашера	BVR	APDB	5.1-8.7	12.8-12.5	Xc	Ek		
(324) Бамберга	BVR	APDB	18.9-21.6	10.1-11.1	CP		Ch	
(419) Аврелия	VB	APDB	12.9-13.7	13.7	F	С		
(505) Кава	BR		6.2-8.8	11.7-11.2	FC	Р	Р	
(554) Перага	VR	APDB	6.7	13.2	Fc	Ch	Ch	
(654) Зелинда	BR	APDB	18.2-21.6	11.2-10.5	С	Ch	Ch	
(704) Интерамния	BR	APDB	16.3-20.3	~12	F	В	Ch	
(1021) Фламарио	BVR	APDB	4.9-14.5	11.5-12.3	F	В	С	

В Таблице 1 представлены данные о наблюденных астероидах.

Таблица 1. Обстоятельства наблюдений избранных астероидов

Она содержит: имя астероида, фотометрические полосы наших наблюдений, наличие/отсутствие данных в Астероидной Поляриметрической Базе Данных (APDB) [16], диапазон наблюдавшихся фазовых углов, эфемеридную звездную величину на момент наблюдений, спектральную классификацию согласно [17, 18] (колонка 1), [19] (колонка 2) и [20] (колонка 3).

Отметим некоторые особенности фотометрического и поляриметрического поведения астероидов, по которым они были включены в нашу программу. Астероид (1) Церера был включен в программу наблюдений как объект, у которого [21] обнаружили эмиссию молекул радикала ОН ($\lambda = 3080$ Å), образующихся в результате фотодиссоциации молекул воды. Авторы заключили, что ОН-атмосфера Цереры не симметрична. Вероятно, что северная полярная шапка астероида состоит из замерзшей H₂O (возможно, в виде инея), которая в течение зимы аккумулируется, а летом сублимирует. Можно предположить, что в результате возможно изменение поляриметрических свойств излучения астероида, особенно если временное образование несимметричной газовой оболочки сопровождается выносом пыли. Кроме того, у (1) Цереры заподозрено монотонное возрастание позиционного угла плоскости отрицательной поляризации с длиной волны [22]. В связи с этим измерения поляризации астероида проведены в широком спектральном диапазоне, включающем фотометрические полосы UBVR.

В работе [23] была найдена большая положительная поляризации излучения астероида (554) Перага ($P_r = 1\%$) на фазовых углах 8 – 10 градусов. Зельнер и Градье отметили этот уникальный случай среди большого числа объектов, которые они наблюдали. Они исключили ошибку в отождествлении объекта, так как он двигался в поле звезд в обе даты наблюдений в соответствии с эфемеридой. Так как на зависимости $P_r(\alpha)$ было всего две точки, можно было заподозрить, что переход ФЗП астероида от отрицательных значений P_r к положительным происходит на очень небольшом угле инверсии $\alpha_{inv} < 8^{\circ}$. Как отмечалось выше, обычно в диапазоне фазовых углов 0 – α_{inv} фазовая зависимость степени поляризации большинства астероидов имеет один минимум [24] и хорошо описывается тригонометрическим полиномом [25] или параболой. В настоящее время установлено, что минимальный угол инверсии давен около 28 градусов для «Вагbara-like» астероидов S-типа [26]. Отметим, что пока абсолютный минимум угла инверсии безатмосферных тел Солнечной системы принадлежит спутнику Юпитера Европа ($\alpha_{inv} \approx 6.1$ градуса, полоса V) [13].

Для уточнения вида отрицательной ветви ФЗП Антонюк и Киселев [27] провели в 2006 г. измерения поляризации (554) Перага в диапазоне фазовых углов 3 – 16 градусов, в том числе и на близком фазовом угле 10.7 градуса, на котором проведены наблюдения Зельнера и Градье. Вопреки данным Зельнера и Градье, была установлена отрицательная степень поляризации $P_r = -2.10 \pm 0.17\%$ астероида. В ошибочность результатов наблюдений Зельнера и Градье трудно поверить, зная огромный опыт этих наблюдателей и то, что они сами обратили внимание на необычные данные для (554) Перага. Поэтому Антонюк и Киселев выдвинули предположение, что различия в поляризации реальны и вызваны различиями в свойствах областей поверхности астероида, которые были доступны для наблюдений Зельнеру и Градье в 1975 г. и Антонюку и Киселеву в 2006 г. Эклиптические координаты астероида в 1975 г. и 2006 г. составили $(\lambda = 181.6^{\circ}, \beta = -2.7^{\circ})$ и $(\lambda = 21.1^{\circ}, \beta = 2.9^{\circ})$, соответственно. Если ось вращения астероида близка к плоскости эклиптики, то разница в эклиптических долготах 160° дает возможность наблюдать две разные поверхности астероида (северную и южную приполярные области) в эти два периода наблюдений. Позже [28, 29] измерили поляризацию (554) Пераги в полосе V на фазовых углах 9.2 и 10.3 градусов. Она оказалась отрицательной: $P_r = -1.31$ и -1.6% соответственно. Эклиптические координаты астероида составили $\lambda = 286.5^{\circ}, \beta = -0.5^{\circ}$ и $\lambda = 264.1^{\circ}, \beta = -1.5^{\circ}$. Нельзя исключить также, что уникальные свойства поляризации (554) Пераги, полученные Зельнером и Градье в 1975 г., были вызваны временной сублимационно-пылевой активностью, обнаруженной для ряда астероидов ([3] и ссылки там). Поэтому наблюдаемые особенности поляризации Пераги стали основанием включения этого астероида в программу поляриметрического мониторинга.

Астероид (704) Интерамния – единственный объект нашей программы, у которого ранее по спектрофотометрическим наблюдениям были обнаружены признаки сублимационно-пылевой активности [1, 30].

Остальные астероиды были включены в программу, как объекты примитивных (низкотемпературных) спектральных классов, находившихся вблизи перигелия, где наиболее вероятно проявление сублимационно-пылевой активности. Результаты поляризационной мониторинговой программы астероидов приведены в Таблице 2.

Таблица	2.	Результаты	поляриметрического	мониторинга
астероидо	в в 2	022 – 2023 гг.		

		α ,	$\varphi,$	$P \pm \sigma,$	$\theta \pm \sigma,$	$\theta_r,$	$P_r = q_r,$	$u_r,$
Г-М-Д	Полоса	град	град	%	град	град	%	%
(1) Церера								
2023-01-20.060	В	20.82	287.91	0.718 ± 0.009	18.26 ± 0.36	0.36	0.718	0.009
2023-01-20.061	R	20.82	287.91	0.725 ± 0.031	18.45 ± 1.23	0.55	0.725	0.014
2023-01-22.010	В	20.54	287.33	0.625 ± 0.010	14.77 ± 0.46	177.44	0.623	-0.056
2023-01-22.010	R	20.54	287.33	0.697 ± 0.032	16.78 ± 1.30	179.45	0.696	-0.013

2023-01-23.012	В	20.38	287.02	0.580 ± 0.018	15.57 ± 0.91	178.55	0.579	-0.029
2023-01-23.004	R	20.38	287.02	0.666 ± 0.033	14.32 ± 1.42	177.30	0.663	-0.063
2023-01-24.995	В	20.06	286.38	0.492 ± 0.014	12.06 ± 0.81	175.68	0.486	-0.074
2023-01-25.005	R	20.06	286.38	0.556 ± 0.031	12.92 ± 1.58	176.55	0.552	-0.067
2023-02-25.003	U	12.20	267.37	1.018 ± 0.040	85.40 ± 1.12	88.03	-1.016	0.070
2023-02-24.985	В	12.20	267.38	1.232 ± 0.023	87.28 ± 0.54	89.90	-1.232	0.005
2023-02-24.985	V	12.20	267.39	1.226 ± 0.022	87.12 ± 0.51	89.73	-1.226	0.012
2023-02-24.985	R	12.20	267.39	1.250 ± 0.030	85.86 ± 0.68	88.47	-1.249	0.067
2023-02-24.999	Ι	12.20	267.37	1.241 ± 0.037	86.77 ± 0.85	89.39	-1.240	0.026
				(53) Калипсо				
2022-12-24.076	В	20.14	291.08	0.261 ± 0.047	120.89 ± 5.19	99.81	-0.246	-0.088
2022-12-31.056	В	17.50	291.71	0.794 ± 0.059	108.54 ± 2.14	86.83	-0.789	0.088
2022-12-31.056	R	17.50	291.71	0.820 ± 0.059	106.01 ± 2.05	84.30	-0.804	0.162
2023-01-24.012	В	5.65	297.15	1.159 ± 0.043	115.67 ± 1.07	88.52	-1.157	0.060
2023-01-24.011	R	5.65	297.15	1.194 ± 0.041	116.09 ± 0.99	88.94	-1.194	0.044
				(117) Ломия				
2022-12-23.772	В	7.69	153.35	0.955 ± 0.061	153.31 ± 1.84	89.96	-0.955	0.001
2023-01-24.790	В	14.70	101.18	0.712 ± 0.089	96.85 ± 3.59	85.67	-0.703	0.107
2023-01-24.790	R	14.70	101.18	0.751 ± 0.086	97.46 ± 3.26	86.29	-0.744	0.097
			1	(164) Ева				1
2022-12-23.662	В	13.49	75.84	1.186 ± 0.037	74.73 ± 0.89	88.89	-1.185	0.046
2022-12-24.691	В	13.95	76.31	1.137 ± 0.039	75.02 ± 0.99	88.71	-1.136	0.051
2022-12-25.740	V	14.42	76.74	1.077 ± 0.043	73.59 ± 1.14	86.85	-1.070	0.118
2022-12-29.781	В	16.10	78.01	0.708 ± 0.045	75.96 ± 1.81	87.95	-0.707	0.051
2023-01-22.785	В	22.83	80.09	0.788 ± 0.065	168.35 ± 2.35	178.26	0.786	-0.048
2023-01-22.786	R	22.83	80.09	0.805 ± 0.055	163.34 ± 1.97	173.25	0.783	-0.188
				(214) Ашера				1
2022-12-23.816	В	8.74	269.66	0.260 ± 0.079	70.74 ± 8.69	71.09	-0.205	0.160
2023-01-21.015	V	5.11	116.03	0.272 ± 0.153	172.62 ± 16.16	146.59	0.107	-0.250
2023-01-21.013	R	5.11	116.03	0.478 ± 0.138	83.22 ± 8.30	57.19	-0.197	0.435

(324) Бамберга										
2022-12-22.792	V	18.36	97.09	0.318 ± 0.023	96.55 ± 2.07	89.46	-0.318	0.006		
2022-12-24.743	В	18.93	95.30	0.256 ± 0.018	98.39 ± 2.06	93.08	-0.255	-0.028		
2022-12-27.884	В	19.83	92.76	0.068 ± 0.040	73.53 ± 17.00	70.77	-0.053	0.042		
2022-12-29.664	В	20.31	91.49	0.104 ± 0.019	92.46 ± 5.28	90.98	-0.104	-0.004		
2022-12-30.973	В	20.65	90.61	0.225 ± 0.023	79.31 ± 2.98	78.69	-0.207	0.086		
2022-12-30.814	R	20.61	90.72	0.207 ± 0.033	1.56 ± 4.63	0.84	0.207	0.006		
2023-01-03.723	В	21.58	88.40	0.501 ± 0.023	179.39 ± 1.29	0.99	0.501	0.017		
2023-01-03.765	R	21.58	88.40	0.490 ± 0.037	175.03 ± 2.19	176.63	0.487	-0.058		
(419) Аврелия										
2022-12-23.719	В	12.88	72.65	0.886 ± 0.099	77.08 ± 3.20	94.43	-0.876	-0.136		
2022-12-25.690	V	13.37	72.66	0.763 ± 0.110	77.46 ± 4.12	94.80	-0.753	-0.127		
(505) Кава										
2022-12-29.821	В	8.79	266.07	1.262 ± 0.059	83.09 ± 1.35	87.02	-1.255	0.131		
2023-01-22.945	В	6.20	132.10	1.182 ± 0.028	132.59 ± 0.68	90.50	-1.181	-0.020		
2023-01-22.945	R	6.20	132.10	1.088 ± 0.031	129.92 ± 0.81	87.82	-1.085	0.083		
		1	1	(654) Зелинда	L			1		
2022-12-24.120	В	27.59	297.70	2.187 ± 0.041	26.77 ± 0.53	179.07	2.186	-0.071		
2023-01-21.929	В	18.20	326.75	0.575 ± 0.027	146.15 ± 1.33	89.40	-0.575	0.012		
2023-01-21.928	R	18.20	326.75	0.530 ± 0.035	147.07 ± 1.91	90.32	-0.530	-0.006		
			(704) Интерамн	ия					
2022-12-22.724	В	20.27	61.66	1.474 ± 0.084	153.74 ± 1.64	2.08	1.470	0.107		
2023-01-22.683	В	16.40	53.67	0.194 ± 0.050	150.98 ± 7.46	7.30	0.187	0.049		
2023-01-22.682	R	16.40	53.67	0.303 ± 0.042	155.25 ± 3.98	11.58	0.278	0.119		
2023-01-23.674	В	16.25	53.40	0.173 ± 0.049	151.69 ± 8.17	8.29	0.166	0.049		
2023-01-23.671	R	16.25	53.40	0.355 ± 0.036	142.26 ± 2.88	178.86	0.355	-0.014		
			((1021) Фламарі	10					
2022-12-25.791	V	4.89	348.72	1.022 ± 0.037	168.26 ± 1.04	89.53	-1.022	0.017		
2023-01-24.817	В	14.49	82.60	0.441 ± 0.088	76.02 ± 5.73	83.42	-0.430	0.101		
2023-01-24.817	R	14.49	82.60	0.329 ± 0.070	89.60 ± 6.11	97.00	-0.319	-0.080		

(554) Перага									
2023-04-25.996	V	6.66	298.18	1.493 ± 0.081	117.79 ± 1.55	89.61	-1.493	0.021	
2023-04-25.996	R	6.66	298.18	1.244 ± 0.055	115.70 ± 1.27	87.52	-1.239	0.108	

В ней представлены: среднее время наблюдений (Г-М-Д (UT)), фотометрическая полоса, фазовый угол (α), позиционный угол плоскости рассеяния (φ), измеренные степень поляризации (Р) и позиционный угол плоскости поляризации (θ) вместе с их среднеквадратическими ошибками (σ), позиционный угол плоскости поляризации (θ_r) и параметры Стокса q_r и u_r по отношению к перпендикуляру к плоскости рассеяния.

На Рисунках 1 (а—н) показаны результаты наших измерений степени поляризации астероидов в полосах В, V и R вместе с данными разных авторов, взятых из каталога APDB [16].

Рис. 1(а-н). Фазовые зависимости степени поляризации астероидов (1) Церера, (704) Интерамния, (324) Бамберга, (1021) Фламарио, (214) Ашера, (419), Аврелия, (554) Перага в полосах В (открытые квадраты), V (открытые ромбы) и R (открытые треугольники) вместе с данными разных авторов (открытые кружочки, закрытые кружочки, закрытые ромбы) из каталога APDB [16].

Из Таблицы 2 и Рисунка 1 видно, что с точностью до ошибок измерений ~ (0.01 ÷ 0.1)%, в зависимости от блеска астероида, данные новых измерений дополняют прежде полученные фазовые зависимости поляризации. Следовательно, можно заключить, что в период наших наблюдений отсутствовали значимые изменения степени поляризации выбранных астероидов. Отсутствие признаков СПА у Интерамнии по поляриметрическим данным не ставит под сомнение обнаруженные ранее эффекты по спектрофо-

тометрическим наблюдениям. Во-первых, как уже отмечалось выше, поляриметрическое проявление СПА может быть слабее по сравнению с эффектами, выявленными по спектрофотометрии. Во-вторых, отсутствие СПА в наш период наблюдений (очень близко до и после перигелийного расстояния) может быть вызвано тем, что проявление сублимационно-пылевой активности Интерамнии обусловлено некоторой тепловой инерцией, зависящей от времени прогревания поверхностного слоя вещества астероида над залежами льда H₂O.

Так как в программу наблюдений были включены примитивные астероиды разных спектральных классов (см. Таблицу 1), то представляет интерес рассмотреть, как измеренная степень поляризации соответствуют их спектральной классификации. В настоящее время существуют несколько вариантов спектральной классификации астероидов. Чаще всего используют классификацию Tholen [17, 18] и Bus & Binzel [19]. Классификация Tholen основана на широкополосных измерениях спектра в диапазоне от 0.31 мкм до 1.06 мкм, полученных в ходе восьмицветной фотометрии астероидов в 1980х гг., и данных альбедо. В классификации Bus & Binzel используются спектральные ПЗС-данные более высокого разрешения, полученные по программе SMASSII, но не учитывается альбедо астероидов. Недавняя таксономия [20] основана на спектрофотометрии в видимом и ближнем инфракрасном диапазонах, а также альбедо астероидов. Принадлежность наблюдавшихся нами астероидов к классам трех спектральных классификации приведена в Таблице 1. Как видно, один и тот же астероид может относятся к разным спектральным классам, поскольку использованы различные критерии для установления разных вариантов таксономии. В связи с этим интересно проанализировать, имеется ли связь между спектральными классами и параметрами поляризации. На Рисунках 2 (а, б) показаны значения степени поляризации P_r в полосах В и R астероидов таксономических классов С и Ch, по классификации [20].

Рис. 2(а, б). Фазовые кривые поляризации исследуемых астероидов в полосах В и R для таксономических классов C, Ch, и P, согласно [20]. Числа на графиках соответствуют номерам астероидов.

Из Рисунков 2 видно, что степень поляризации астероидов (53) Калипсо, (324) Бамберга, (554) Перага и (654) Зелинда, относящихся к таксономическому классу Ch (согласно [20], см. также Таблицу 1), можно аппроксимировать едиными фазовыми кривыми поляризации в синей и красной полосах. Вместе с тем, кривая поляризации астероида (704) Интерамнии, того же спектрального класса Ch, заметно отличается от этих кривых. Степень поляризации астероидов (1) Цереры, (117) Ломии, (164) Евы, (419) Аврелии и (1021) Фламарио, относящиеся к С-типу, систематически выше по сравнению с ФЗП астероидов Ch-типа и имеет большее рассеяние данных. Это, а также пример с астероидом (704) Интерамнией, указывает на необходимость привлекать к таксономии астероидов, кроме данных по спектрофотометрии и альбедо, данные по поляризации.

На Рисунке 3 представлена спектральная зависимость позиционного угла θ_r и степени поляризации q_r астероида (1) Церера, измеренные 24 февраля 2023 г.

Рис. 3. Спектральная зависимость позиционного угла плоскости поляризации θ_r (кружочки) и степени поляризации q_r (ромбы) астероида (1) Церера 24 февраля 2023 г. Прямая линия соответствует среднему значению угла $\theta_r = 89.1 \pm 0.7$ градуса.

Очевидно, что с точностью до 1 σ случайных ошибок наблюдений спектральная зависимость позиционного угла плоскости поляризации θ_r плоская. Среднее значение угла $\theta_r = 89.1^{\circ} \pm 0.81^{\circ}$ также в пределах 1 σ отличается от ортогонального значения, которое обычно наблюдается для безатмосферных тел Солнечной системы при стандартных условиях наблюдений, когда падающий луч, нормаль к поверхности объекта и отраженный луч лежат в одной плоскости. Таким образом, наши измерения не подтвердили систематическое увеличение угла плоскости поляризации астероида (1) Цереры, отмеченное в работе [22].

Что касается возможности наличия у Цереры СПА, имеются многолетние наблюдательные данные [31], свидетельствующие о корреляции вариаций спектров отражения Цереры с солнечной активностью. Такой вариант активности может быть преобладающим у астероидов с малым эксцентриситетом орбиты и малым наклоном оси вращения (или спиновой оси) относительно нормали к плоскости орбиты. Как известно по уточненным данным космического аппарата Dawn (HACA), у Цереры эти параметры составляют соответственно 0.0789125318 [32] и 4° [33].

4. ЗАКЛЮЧЕНИЕ

1. С декабря 2022 г. по апрель 2023 г. на телескопе Цейсс – 2000 обсерватории Пик Терскол проведен UBVR-поляриметрический мониторинг 12 астероидов, в основном примитивных типов Главного пояса, находившихся на расстояниях вблизи перигелия, с целью поиска изменений поляризации, вызванных возможной сублимационно-пылевой активностью.

2. Показано, что в период наблюдений значимые изменения степени поляризации выбранных астероидов отсутствовали.

3. В настоящее время астероид (554) Перага является единственным, у которого наблюдались значимые временные изменения степени поляризации.

4. Показано, что существующие в настоящее время спектральные классификации астероидов, основанные на спектрофотометрических данных и альбедо, демонстрируют значительный разброс при сопоставлении спектральных классов с фазовыми зависимостями поляризации астероидов. Поэтому для надежного выделения таксономических классов надо привлекать данные по поляризации астероидов.

5. Наши измерения не подтвердили систематическое увеличение угла плоскости поляризации астероида (1) Цереры, отмеченное в работе [22].

6. С целью повышения вероятности обнаружения признаков СПА у АГП примитивных типов в форме вариаций поляриметрических данных целесообразно уменьшить интервалы времени между последовательными измерениями и проводить не менее двух последовательных измерений в используемых фотометрических полосах.

БЛАГОДАРНОСТИ

Авторы (Бусарев В.В. и Щербина М.П.) выражают благодарность Российскому научному фонду за финансовую поддержку работы (грант РНФ 22-12-00115).

СПИСОК ЛИТЕРАТУРЫ

1. $\operatorname{refitem}\{article\}$

V. V. Busarev, S. I. Barabanov, V. S. Rusakov, V. B. Puzin, and V. V. Kravtsov, Icarus **262**, 44 (2015).

2. $\operatorname{refitem}\{article\}$

V. V. Busarev, A. B. Makalkin, F. Vilas, S. I. Barabanov, and M. P. Scherbina, Icarus **304**, 83 (2018).

3. \refitem{*article*}

V. V. Busarev, E. V. Petrova, M. P. Shcherbina, S. Y. Kuznetsov, M. A. Burlak, N. P. Ikonnikova, A. A. Savelova, and A. A. Belinskii, Solar System Research 57, 439 (2023).

4. $\operatorname{refitem}\{article\}$

V. V. Busarev, E. V. Petrova, T. R. Irsmambetova, M. P. Shcherbina, and S. I. Barabanov, Icarus **369**, 114634 (2021).

5. $\operatorname{refitem}\{article\}$

E. Petrova and V. Busarev, Solar System Research 57, 161 (2023).

6. $\operatorname{refitem}\{article\}$

C. R. Chapman, D. Morrison, and B. Zellner, Icarus 25, 104 (1975).

7. $\operatorname{refitem}\{incollection\}$

A. Dollfus, M. Wolff, J. Geake, D. Lupishko, and L. Dougherty, in Asteroids II (1989), pp. 594–616.

8. $\operatorname{refitem} \{ article \}$

I. Belskaya, A. Cellino, R. Gil-Hutton, K. Muinonen, Y. Shkuratov, et al., Asteroids IV 151 (2015).

9. $\operatorname{refitem} \{ article \}$

Е. Петрова, Астрономический вестник 58 (2023), в печати.

10. \refitem{*inproceedings*}

K. Serkowski and T. Gehrels, in Proc. Of IAU Colloq (1974), vol. 23, p. 135.

11. $\operatorname{refitem}\{article\}$

J.-C. Hsu and M. Breger, Astrophysical Journal, Part 1, vol. 262, Nov. 15, 1982, p. 732-738. 262, 732 (1982).

12. $\operatorname{refitem}\{article\}$

G. D. Schmidt, R. Elston, and O. L. Lupie, Astronomical Journal (ISSN 0004-6256),
vol. 104, no. 4, p. 1563-1567. 104, 1563 (1992).

13. $\operatorname{refitem}\{article\}$

N. Kiselev, V. Rosenbush, K. Muinonen, L. Kolokolova, A. Savushkin, and N. Karpov, The Planetary Science Journal **3**, 134 (2022).

14. $\operatorname{refitem} \{ article \}$

G. Chernova, D. Lupishko, and V. Shevchenko, Kinematika i Fizika Nebesnykh Tel 10, 45 (1994).

15. $\operatorname{refitem}\{article\}$

K. Lumme and K. Muinonen, p. 194 (1993).

16. $\operatorname{refitem}\{article\}$

D. Lupishko, NASA Planetary Data System p. 1 (2019).

17. $\operatorname{refitem}\{misc\}$

D. Tholen, In asteroids ii, ed. rp binzel, t. gehrels, & ms matthews (1989), p. 1139-1150.

18. $\operatorname{refitem}\{misc\}$

D. J. Tholen, Asteroid taxonomy from cluster analysis of photometry, PhD thesis, University of Arizona (1984), 150 p.

19. $\operatorname{refitem}\{article\}$

S. J. Bus and R. P. Binzel, Icarus 158, 146 (2002).

20. $\operatorname{refitem}\{article\}$

M. Mahlke, B. Carry, and P.-A. Mattei, Astronomy & Astrophysics 665, A26 (2022).

21. $\operatorname{refitem}\{article\}$

M. F. A'Hearn and P. D. Feldman, Icarus 98, 54 (1992).

22. $\operatorname{refitem}\{misc\}$

Д. Лупишко, Фотометрия и поляриметрия астероидов: результаты наблюдений и анализ данных, Дисс. докт. физ.-мат. наук (1998), 259 с.

23. $\operatorname{refitem} \{ article \}$

B. Zellner and J. Gradie, The Astronomical Journal 81, 262 (1976).

24. $\operatorname{refitem} \{ article \}$

A. Cellino, S. Bagnulo, R. Gil-Hutton, P. Tanga, M. Cañada-Assandri, and E. Tedesco, Monthly Notices of the Royal Astronomical Society 451, 3473 (2015).

25. $\operatorname{refitem}\{article\}$

A. Penttilä, K. Lumme, E. Hadamcik, and A.-C. Levasseur-Regourd, Astronomy & Astrophysics 432, 1081 (2005).

26. $\operatorname{refitem} \{ article \}$

R. Gil-Hutton, V. Mesa, A. Cellino, P. Bendjoya, L. Penaloza, and F. Lovos, Astronomy & Astrophysics 482, 309 (2008).

27. $\operatorname{refitem}\{article\}$

K. Antonyuk and N. Kiselev, Solar System Research 46, 54 (2012).

28. $\operatorname{refitem}\{article\}$

R. Gil-Hutton et al., Astronomy & Astrophysics 539, A115 (2012).

29. $\operatorname{refitem}\{article\}$

R. Gil-Hutton and E. García-Migani, Astronomy & Astrophysics 607, A103 (2017).

30. $\operatorname{refitem}\{article\}$

V. Busarev, S. Barabanov, and V. Puzin, Solar System Research 50, 281 (2016).

31. $\operatorname{refitem}\{inproceedings\}$

V. Busarev, L. Golubeva, E. Petrova, and D. Shestopalov, in *The Eleventh Moscow Solar System Symposium 11M-S3* (2020), pp. 275–278.

32. $\operatorname{refitem}\{misc\}$

J. P. Laboratory, *Small-Body Database Lookup Tool*, uRL: https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=1 [Дата обращения: 4 октября 2023 г.], URL https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=1.

33. $\operatorname{refitem} \{ article \}$

N. Schorghofer, E. Mazarico, T. Platz, F. Preusker, S. E. Schröder, C. A. Raymond, and C. T. Russell, Geophysical Research Letters **43**, 6783 (2016).